Nonnegative Matrix Factorization on Orthogonal Subspace with Smoothed L0 Norm Constrained

نویسندگان

  • Jun Ye
  • Zhong Jin
چکیده

It is known that the sparseness of the factor matrices by Nonnegative Matrix Factorization can influence the clustering performance. In order to improve the ability of the sparse representations of the NMF, we proposed the new algorithm for Nonnegatie Matrix Factorization, coined nonnegative matrix factorization on orthogonal subspace with smoothed L0 norm constrained, in which the generation of orthogonal factor matrices with smoothed L0 norm constrained are the parts of objective function minimization. Also we develop simple multiplicative updates for our proposed method. Experiment on three real-world databases (Iris, UCI, ORL) show that our proposed method can achieve the best or close to the best in clustering and in the way of the sparse representation than other methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectral unmixing using nonnegative matrix factorization with smoothed L0 norm constraint

Sparse nonnegative matrix factorization (NMF) is exploited to solve spectral unmixing. Firstly, a novel model of sparse NMF is proposed, where the smoothed L0 norm is used to control the sparseness of the factors corresponding to the abundances. Thus, one need not set the degree of the sparseness in prior any more. Then, a gradient based algorithm NMF-SL0 is utilized to solve the proposed model...

متن کامل

A Projected Alternating Least square Approach for Computation of Nonnegative Matrix Factorization

Nonnegative matrix factorization (NMF) is a common method in data mining that have been used in different applications as a dimension reduction, classification or clustering method. Methods in alternating least square (ALS) approach usually used to solve this non-convex minimization problem.  At each step of ALS algorithms two convex least square problems should be solved, which causes high com...

متن کامل

Robust Multi-subspace Analysis Using Novel Column L0-norm Constrained Matrix Factorization

We study the underlying structure of data (approximately) generated from a union of independent subspaces. Traditional methods learn only one subspace, failing to discover the multi-subspace structure, while state-of-the-art methods analyze the multi-subspace structure using data themselves as the dictionary, which cannot offer the explicit basis to span each subspace and are sensitive to error...

متن کامل

Group Sparsity and Graph Regularized Semi-Nonnegative Matrix Factorization with Discriminability for Data Representation

Abstract: Semi-Nonnegative Matrix Factorization (Semi-NMF), as a variant of NMF, inherits the merit of parts-based representation of NMF and possesses the ability to process mixed sign data, which has attracted extensive attention. However, standard Semi-NMF still suffers from the following limitations. First of all, Semi-NMF fits data in a Euclidean space, which ignores the geometrical structu...

متن کامل

A Modified Digital Image Watermarking Scheme Based on Nonnegative Matrix Factorization

This paper presents a modified digital image watermarking method based on nonnegative matrix factorization. Firstly, host image is factorized to the product of three nonnegative matrices. Then, the centric matrix is transferred to discrete cosine transform domain. Watermark is embedded in low frequency band of this matrix and next, the reverse of the transform is computed. Finally, watermarked ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012